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Non-Markovian state-dependent networks
in critical loading

Chihoon Lee∗

Department of Statistics
Colorado State University

Anatolii A. Puhalskii†

University of Colorado Denver and
Institute for Problems in Information Transmission

January 23, 2013

Abstract

We establish heavy traffic limit theorems for queue-length processes in critically loaded
single class queueing networks with state-dependent arrival and service rates. A distin-
guishing feature of our model is non-Markovian state dependence. The limit stochastic
process is a continuous-path reflected process on the nonnegative orthant. We give an
application to generalised Jackson networks with state-dependent rates.

Keywords: State-dependent networks, non-Markovian networks, diffusion approximation,
weak convergence

AMS Subject Classifications: Primary 60F17; secondary 60K25, 60K30, 90B15

1 Introduction

Queueing systems with arrival and (or) service rates depending on the system’s state arise
in various application areas which include manufacturing, storage, service engineering, and
communication and computer networks. Longer queues may lead to customers being dis-
couraged to join the queue, or to faster processing, e.g., when human servers are involved.

∗E-mail: chihoon@stat.colostate.edu
†E-mail: anatolii.puhalskii@ucdenver.edu
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State-dependent features are present in congestion control protocols in communication net-
works, such as TCP (see [1, 3, 12, 14, 19] and references therein for more detail).

In this paper, we consider an open network of single server queues where the arrival and
service rates depend on the queue lengths. The network consists of K single-server stations
indexed 1 through K . Each station has an infinite capacity buffer and the customers are
served according to the first-in-first-out discipline. The arrivals of customers at the stations
occur both externally, from the outside and internally, from the other stations. Upon service
completion at a station, a customer is either routed to another station or exits the network.
Every customer entering the network eventually leaves it. A distinguishing feature of the
model is non-Markovian state dependence. More specifically, the number of customers at
station i, where i = 1, 2, . . . , K, is governed by the following equations

Qi(t) =Qi(0) + Ai(t) +Bi(t)−Di(t),

Ai(t) =NA
i

(∫ t

0

λi(Q(s))ds

)
,

Bi(t) =
K∑
j=1

Φji

(
Dj(t)

)
,

Di(t) =ND
i

(∫ t

0

µi(Q(s))1{Qi(s)>0}ds

)
,

(1.1)

where Q(s) = (Q1(s), . . . , QK(s)) denotes the vector of the queue lengths at the stations at
time s . The quantities NA

i (t) and ND
i (t) represent the number of exogeneous arrivals and

the maximal number of customers that can be served, respectively, at station i by time t
under “nominal” conditions, Φji(m) denotes the number of customers routed from station
j to station i out of the first m customers served at station j , and λi(Q(t)) and µi(Q(t))
represent instantaneous exogenous arrival and service rates, respectively, for station i at
time t given the queue length vector Q(t) . Thus, Ai(t) represents the cumulative number
of exogeneous arrivals by time t at station i , Di(t) represents the cumulative number of
departures by time t from station i , and Bi(t) represents the cumulative number of customers
routed to station i from the other stations by time t . The quantities Qi(0), NA

i (t), ND
i (t),

and Φij(m) are referred to as network primitives. Generalised Jackson networks is a special
case of (1.1) where the NA

i and ND
i are renewal processes, the Φij are Bernoulli processes,

and λi(·) = µi(·) = 1 .

Our goal is to obtain limit theorems in critical loading for the queue length processes akin
to diffusion approximation results available for generalised Jackson networks, see Reiman
[18]. The results on the heavy traffic asymptotics for state-dependent rates available in the
literature are mostly confined to the case of diffusion limits for Markovian models, see Ya-
mada [20], Mandelbaum and Pats [14], and Chapter 8 of Kushner [12]. Yamada [20] and
Mandelbaum and Pats [14], building on the work of Krichagina [10] who studied a Markovian
closed network with state-dependent rates, considered a case of the model (1.1) where the
primitive arrival and service processes are standard Poisson. Kushner [12] also includes a
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treatment of that model (see Theorem 2.1 on p.318), however, their basic model is formu-
lated in terms of the conditional distributions of the interarrival (or service) intervals (or
the routing), given the “past”. Those authors obtain results in which the drift coefficients
of the limit diffusion processes are state-dependent and the diffusion coefficients may be
either constant or state-dependent, which is determined by the scaling used. Yamada [20]
and Kushner [12] assume critical loading and obtain mostly diffusions with state-dependent
diffusion coefficients, although Yamada [20] considers an example with a constant diffusion
coefficient where the drift has to be linear and Theorem 2.1 on p.318 of Kushner [12] con-
cerns the case of constant diffusion coefficients, whereas Mandelbaum and Pats [14] do not
restrict their analysis to critical loading and their limits have constant diffusion coefficients.
Mandelbaum and Pats [14] and Kushner [12] also allow the process of routing the customers
inside the network to be state-dependent, however, their reasonings seem to be unsubstanti-
ated, as discussed in Section 2. Section 7 of Yamada [20] is concerned with a non-Markovian
case where the processes NA

i are standard Poisson, the processes ND
i are renewal processes,

and µi(·) = 1 . It is also mentioned that an extension to the case of renewal arrivals with
λi(·) = 1 and standard Poisson processes ND

i is possible.

The main contribution of this piece of work is incorporating general arrival and service
processes. This is achieved by applying an approach different from the one used by Yamada
[20], Mandelbaum and Pats [14], and Kushner [12]. The proofs of those authors rely heavily
on the martingale weak convergence theory. They are quite involved, on the one hand,
and do not seem to be easily extendable to more general arrival and service processes, on
the other hand. In our approach we, in a certain sense, return to the basics and employ
ideas which have proved their worth in the set-up of generalised Jackson networks. We
show that continuity considerations may produce stronger conclusions at less complexity.
Our main result states that if the network primitives satisfy certain limit theorems with
continuous-path limits, then the multidimensional queue-length processes, when suitably
scaled and normalised, converge to a reflected continuous-path process on the nonnegative
orthant. If the limits of the primitives are diffusion processes, the limit stochastic process is a
reflected diffusion with state-dependent drift coefficients and constant diffusion coefficients.
The scaling we use does not capture the case of state-dependent diffusion coefficients. We
also give an application to generalised Jackson networks with state-dependent rates thus
providing an extension of Reiman’s [18] results. In addition, we bridge certain gaps in the
reasonings of Yamada [20], Mandelbaum and Pats [14], and Kushner [12]. For instance, the
proofs assume functions λi(·) and µi(·) are bounded and allude to a “truncation argument”
for the unbounded case omitting the details. In particular, existence and uniqueness for
(1.1) is not fully addressed. The key to the extension to unbounded rates is tightness
of the processes in question. We give a crisp reasoning establishing that property under
linear growth conditions (see Lemma 3.1), which enables us to prove both the existence
and uniqueness of a solution to equations (1.1) and the limit theorem under linear growth
conditions. A more detailed discussion is provided at the end of Section 2.

A different class of results on diffusion approximation concerns queueing systems modelled
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on the many-server queue with a large number of servers. In such a system the service rate
decreases to zero gradually with the number in the system (whereas in the model considered
here it has a jump at zero, see (2.2d)), so the limit process is an unconstrained diffusion,
see, Mandelbaum, Massey, and Reiman [13], Pang, Talreja, and Whitt [15], and references
therein. We do not consider those set-ups in this paper.

The exposition is organised as follows. In the next section, we state and discuss our main
result. The proof is provided in Section 3. In Section 4, an application to state-dependent
generalised Jackson networks is presented. The appendix contains a proof of the pathwise
queue-length construction underlying the definition of the model.

Some notational conventions are in order. All vectors are understood as column vectors,
|x| denotes the Euclidean length of a vector x, its components are denoted by xi, unless men-
tioned otherwise, superscript T is used to denote the transpose, 1A stands for the indicator
function of an event A , δij represents Kronecker’s delta, bac denotes the integer part of a real
number a , Z+ denotes the set of whole numbers, and S is used to denote the K-dimensional
non-negative orthant IRK

+ . We use D([0,∞), IR`) to represent the Skorohod space of right
continuous functions with left hand limits which is endowed with the Skorohod topology,
⇒ represents convergence in distribution of random elements with values in an appropriate
metric space, see Billingsley [2], Ethier and Kurtz [6] for more information. We also recall
that a sequence V n of stochastic processes with trajectories in a Skorohod space is said to be
C-tight if the sequence of the laws of the V n is tight, and if all limit points of the sequence
of the laws of the V n are laws of continuous-path processes (see, e.g., Definition 3.25 and
Proposition 3.26 in Chapter VI of Jacod and Shiryaev [9]).

2 The main result

Let (Ω,F ,P) be a probability space where all random variables considered in this paper are
assumed to be defined. We consider a sequence of networks indexed by n with a similar
structure as the one described in the Introduction. For the n-th network and for i ∈ IK,
where IK = {1, 2, . . . , K}, let Ani (t) represent the cumulative number of customers that
arrive at station i from outside the network during the time interval [0, t], and let Dn

i (t)
represent the cumulative number of customers that are served at station i for the first t
units of busy time of that station. Let J ⊆ IK represent the set of stations with actual
arrivals so that Ani (t) = 0 if i 6∈ J . We call An = (Ani , i ∈ IK) and Dn = (Dn

i , i ∈ IK), where
Ani = (Ani (t), t ≥ 0) and Dn

i = (Dn
i (t), t ≥ 0), the arrival process and service process for

the n-th network, respectively. We associate with the stations of the network the processes
Φn
i = (Φn

ij, j ∈ IK), i ∈ IK, where Φn
ij = (Φn

ij(m),m = 1, 2, . . .), and Φn
ij(m) denotes the

cumulative number of customers among the first m customers that depart station i which
go directly to station j. The process Φn = (Φn

ij, i, j ∈ IK) is referred to as the routing
process. We consider the processes Ani , D

n
i , and Φn

i as random elements of the respective
Skorohod spaces D([0,∞), IR),D([0,∞), IR), and D([0,∞), IRK); accordingly, An, Dn, and
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Φn are regarded as random elements of D([0,∞), IRK),D([0,∞), IRK), and D([0,∞), IRK×K),
respectively.

Let λni and µni , where i ∈ IK, be Borel functions mapping S to IR+, with λni (x) = 0
if i 6∈ J , and let λn = (λn1 , . . . , λ

n
K) and µn = (µn1 , . . . , µ

n
K) . These functions have the

meaning of state-dependent arrival and service rates. Let NA,n
i = (NA,n

i (t) , t ≥ 0) and
ND,n
i = (ND,n

i (t) , t ≥ 0) represent nondecreasing Z+-valued processes with trajectories
in D([0,∞), IR) and with NA,n

i (0) = ND,n
i (0) = 0. We define NA,n

i (t) = btc if i 6∈ J .
(The latter is but a convenient convention. Since λni (x) = 0 if i 6∈ J , the process NA,n

i is
immaterial, as the equations below show.) The state of the network at time t is represented
by Qn(t) = (Qn

1 (t), . . . , Qn
K(t)) , where Qn

i (t) represents the number of customers at station
i at time t . It is assumed to satisfy a.s. the equations:

Qn
i (t) =Qn

i (0) + Ani (t) +Bn
i (t)−Dn

i (t), (2.2a)

Ani (t) =NA,n
i

(∫ t

0

λni (Qn(s))ds

)
, (2.2b)

Bn
i (t) =

K∑
j=1

Φn
ji

(
Dn
j (t)

)
, (2.2c)

Dn
i (t) =ND,n

i

(∫ t

0

µni (Qn(s))1{Qn
i (s)>0}ds

)
, (2.2d)

where t ≥ 0 and i ∈ IK. As above, Qn
i (0) ∈ Z+ is the initial queue length at station i;

Ani (t), Bn
i (t), and Dn

i (t) represent the cumulative number of exogenous arrivals at station
i during the time interval [0, t], the cumulative number of endogenous arrivals at station i
during the time interval [0, t], and the cumulative number of departures from station i during
the time interval [0, t], respectively.

Let P = (pij, i, j ∈ IK) be a substochastic matrix, R = I − P T , and pi = (pij, j ∈ IK) .
We denote

Q
n
(0) =

Qn(0)√
n
, N

A,n

i (t) =
NA,n
i (nt)− nt√

n
,

N
D,n

i (t) =
ND,n
i (nt)− nt√

n
, Φ

n

i (t) =
Φn
i (bntc)− pint√

n
,

N
A,n

i =(N
A,n

i (t), t ≥ 0), N
A,n

=(N
A,n

i , i ∈ IK),

N
D,n

i =(N
D,n

i (t), t ≥ 0), N
D,n

=(N
D,n

i , i ∈ IK),

Φ
n

i =(Φ
n

i (t), t ≥ 0), Φ
n

=(Φ
n

i , i ∈ IK) .

We will need the following conditions.

(A0) For each n ∈ IN and each i ∈ J , lim supt→∞N
A,n
i (t)/t <∞ a.s.

(A1) The spectral radius of matrix P is strictly less than 1.
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(A2) For each i ∈ IK,

sup
n∈IN

sup
x∈S

λni (nx) + µni (nx)

n(1 + |x|)
<∞.

(A3) There exist continuous functions λi(x) and µi(x) such that

λni (nx)

n
→ λi(x),

µni (nx)

n
→ µi(x)

uniformly on compact subsets of S, as n→∞. Furthermore, for x ∈ S,

λ(x)−Rµ(x) = 0.

(A4) There exists a Lipschitz-continuous function a(x) such that

1√
n

(λn(
√
nx)−Rµn(

√
nx))→ a(x)

as n→∞ uniformly on compact subsets of S.

(A5) As n→∞,

(Q
n
(0), N

A,n
, N

D,n
,Φ

n
)⇒ (X0,W

A,WD,WΦ)

where X0 is a random K-vector, WA, WD, and WΦ are continuous-path stochastic
processes with trajectories in respective spaces D([0,∞), IRK), D([0,∞), IRK), and
D([0,∞), IRK×K) .

Lemma 2.1. Let condition (A0) hold and maxi∈IK supx∈S(λni (x)+µni (x))/(1+|x|) <∞. Then
equations (2.2a)–(2.2d) admit a unique strong solution Qn, which is a ZK+ -valued stochastic
process.

The proof is provided in the appendix. In order to state the main result, we have to
recall standard properties of the Skorohod map.

Definition 2.2. Let ψ ∈ D([0,∞), IRK) be given with ψ(0) ∈ S. Then the pair (φ, η) ∈
D([0,∞), IRK) × D([0,∞), IRK) solves the Skorohod problem for ψ with respect to S and R
if the following hold:

(i) φ(t) = ψ(t) +Rη(t) ∈ S, for all t ≥ 0;

(ii) for i ∈ IK, (a) ηi(0) = 0, (b) ηi is non-decreasing, and (c) ηi can increase only when φ
is on the ith face of S, that is,

∫∞
0

1{φi(s) 6=0}dηi(s) = 0.

Let DS([0,∞), IRK) = {ψ ∈ D([0,∞), IRK) : ψ(0) ∈ S}. If the Skorohod problem has a
unique solution on a domain D ⊂ DS([0,∞), IRK), we define the Skorohod map Γ on D by
Γ(ψ) = φ . The following result (see Harrison and Reiman [7] and also Dupuis and Ishii [4])
yields the regularity of the Skorohod map and is a consequence of Assumption (A1).
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Proposition 2.3. The Skorohod map Γ is well defined on DS([0,∞), IRK) and is Lipschitz
continuous in the following sense: There exists a constant L > 0 such that for all T > 0 and
ψ1, ψ2 ∈ DS([0,∞), IRK),

sup
t∈[0,T ]

|Γ(ψ1)(t)− Γ(ψ2)(t)| ≤ L sup
t∈[0,T ]

|ψ1(t)− ψ2(t)|.

Consequently, both φ and η are continuous functions of ψ.

The Lipschitz continuity of the Skorohod map and of the function a(x) imply that the
equation

X(t) = Γ
(
X0 +

∫ ·
0

a(X (s))ds+M(·)
)
(t), (2.3)

where

Mi(t) = WA
i (λi(0)t) +

K∑
j=1

WΦ
ji (µj(0)t)−

K∑
j=1

(δij − pji)WD
j (µj(0)t) , (2.4)

has a unique strong solution. For t ≥ 0 and i ∈ IK, let Xn
i (t) = Qn

i (t)/
√
n. We also define

X = (X(t), t ≥ 0) and Xn = ((Xn
i (t), i = 1, 2, . . . , K), t ≥ 0) .

Theorem 2.4. Let conditions (A0)–(A5) hold. Then Xn ⇒ X, as n→∞ .

The proof is given in the next section.

We now discuss our results as well as those of Yamada [20] and Mandelbaum and Pats
[14]. Condition (A0) is needed to ensure the existence of a unique strong solution to the
system of equations (2.2a)–(2.2d), see Lemma 2.1. It is certainly fulfilled if NA,n

i is a re-
newal process and is almost a consequence of condition (A5) in that the latter implies that
limn→∞N

A,n
i (nt)/(nt) = 1 in probability. Part (A1) is essentially an assumption that the

network is open and underlies the existence of a regular Skorohod map associated with the
network data asserted in Proposition 2.3. The linear growth condition (A2) is the same
as condition (A2) in Mandelbaum and Pats [14]. The requirement λ(x) = Rµ(x) in (A3)
together with condition (A4) defines a critically loaded heavy traffic regime. Condition (A5)
is the assumption on the primitives. The components of WA corresponding to i 6∈ J vanish.
Conditions (A2)–(A4) are fulfilled if the following expansions hold:

λn(x) = nλ1(x/n) +
√
nλ2(x/

√
n) and µn(x) = nµ1(x/n) +

√
nµ2(x/

√
n), (2.5)

where λ1 and µ1 are continuous functions satisfying the linear-growth condition such that
λ1(x) = Rµ1(x) , and λ2 and µ2 are bounded Lipschitz-continuous. If the above functions are
constant, then one obtains the standard critical loading condition that (λn − Rµn)/

√
n →

λ2 − µ2 as n→∞, cf. Reiman [18].

Most of the results on diffusion approximation in critical loading (see, e.g., Harrison and
Reiman [7], Kushner [12]) formulate the heavy traffic condition in terms of rates that are

7



O(1) and then consider scaled processes Qn(nt)/
√
n. In the scaling considered here, as in

Yamada [20] and Mandelbaum and Pats [14], the time parameter is left unchanged and the
factor of n is absorbed in the arrival and service rates. This is more convenient notationally,
however, in the application to generalised Jackson networks in Section 4 we work with the
conventional scaling. It may be instructive to note, though, that if one looked for limits for
processes Qn(nt)/

√
n, then the analogues of expansions (2.5) would be

λn(x) = λ1(x/n) + (1/
√
n)λ2(x/

√
n) and µn(x) = µ1(x/n) + (1/

√
n)µ2(x/

√
n),

whereas the assumptions of Yamada [20] would amount to the expansions

λn(x) = λ1(x/
√
n) + (1/

√
n)λ2(x/

√
n) and µn(x) = µ1(x/

√
n) + (1/

√
n)µ2(x/

√
n).

Theorems 1 and 2 in Yamada [20] obtain diffusion processes with state-dependent drift
and diffusion coefficients as the limits. Theorem 1 concerns the Markovian model. It is
required that there be at least one nonzero external arrival process. The arrival and service
rates at a station may depend on the queue length at that station only. Theorem 2 concerns a
Jackson network with external arrival processes being Poisson processes with state-dependent
rates. In the proof of Theorem 2, the process djn(t) claimed to be a locally square integrable
martingale on p.980 does not seem to be so, anyway, no justification is provided.

The model of Yamada [20] is defined by postulating certain martingale properties of the
arrival, service, and customer transfer processes. No justification of this model in terms of
the primitive processes is provided, nor is the issue of the assumptions being self-consistent
addressed. This gap is filled in by Mandelbaum and Pats [14], although the authors admit
the proof is missing technical detail, see p.623 in Mandelbaum and Pats [14]. On the other
hand, Mandelbaum and Pats [14] produce few details with regard to the existence and
uniqueness of a solution to (1.1) under linear growth conditions on the rates. In particular,
it is not explained how Theorem 2.1 in Kurtz [11] enables one to establish Proposition 13.4,
nor is it spelled out how Proposition 13.4 furnishes the proof of existence and uniqueness.
The proof of Theorem 2.1 in Kurtz [11] seems to have gaps too. Mandelbaum and Pats
[14] and Kushner [12] allow the routing matrix to be state-dependent. Mandelbaum and
Pats [14] appeal to Theorem 5.1 and Corollary 5.2 in Dupuis and Ishii [5] to substantiate
the existence and uniqueness for the Skorohod problem, however, those results are proved
for bounded domains, so they do not apply. The authors’ attempt on p.628 to recast the
reflection problem as a time-dependent reflection is unconvincing. Kushner [12], in their
proofs of Theorem 1.1 on p.309 and Theorem 2.1 on p.318, relies on their Theorem 5.1 on
p.123 and Theorem 5.2 on p.124 which in turn are based on Theorem 2.2 in Dupuis and Ishii
[4], however, those results pertain to reflection directions which are constant on the faces, so
they do not apply to state-dependent reflection directions.

Kushner [12] does not address the issue of the model being well defined either. Nor
are we convinced by the substantiation of martingale properties claimed to hold on p.310.
Besides, the hypotheses of Theorem 1.1 on p.309 and Theorem 2.1 on p.318 of Kushner [12]
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are missing the condition of the drift and diffusion coefficients being Lipschitz continuous.
On the other hand, the condition that the first moments of the initial queue lengths be finite
assumed by Mandelbaum and Pats [14] can be done away with.

3 Proof of Theorem 2.4

We assume conditions (A0)–(A5) throughout this section. We introduce the “centered”
processes as follows: For i ∈ IK and t ≥ 0,

Mn
i (t) =MA,n

i (t) +MB,n
i (t)−MD,n

i (t), (3.6a)

where

MA,n
i (t) =NA,n

i

(∫ t

0

λni (Qn(s))ds

)
−
∫ t

0

λni (Qn(s))ds, (3.6b)

MB,n
i (t) =

K∑
j=1

(
Φn
ji

(
Dn
j (t)

)
− pjiDn

j (t)
)
, (3.6c)

and

MD,n
i (t) =ND,n

i

(∫ t

0

µni (Qn(s))1{Qn
i (s)>0}ds

)
−
∫ t

0

µni (Qn(s))1{Qn
i (s)>0}ds

+
K∑
j=1

pji

(
ND,n
j

(∫ t

0

µnj (Qn(s))1{Qn
j (s)>0}ds

)
−
∫ t

0

µnj (Qn(s))1{Qn
j (s)>0}ds

)
. (3.6d)

We can rewrite the evolution (2.2a) as

Qn
i (t) = Qn

i (0) +

∫ t

0

[
λni (Qn(s)) +

K∑
j=1

pjiµ
n
j (Qn(s))− µni (Qn(s))

]
ds+Mn

i (t) + [RY n(t)]i,

where Y n(t) = (Y n
i (t) , i ∈ IK) and

Y n
i (t) =

∫ t

0

1{Qn
i (s)=0}µ

n
i (Qn(s)) ds, i ∈ IK, (3.7)

Note that (Y n
i (t), t ≥ 0) is a continuous-path non-decreasing process with Y n

i (0) = 0, which
increases only when Qn

i (t) = 0, i.e.,
∫∞

0
1{Qn

i (t)6=0}dY
n
i (t) = 0 a.s. Let

an(x) = λn(x)−Rµn(x). (3.8)
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Then the state evolution can be expressed succinctly by the following vector equation:

Qn(t) = Qn(0) +

∫ t

0

an(Qn(s))ds+Mn(t) +RY n(t), t ≥ 0. (3.9)

It can also be described in terms of the Skorohod map:

Qn(t) = Γ

(
Qn(0) +

∫ ·
0

an(Qn(s))ds+Mn(·)
)

(t), for t ≥ 0. (3.10)

The following tightness result is essential.

Lemma 3.1. The sequence of processes (Mn(t)/
√
n, t ≥ 0) is C-tight.

Proof. By (2.2a) – (2.2d),

K∑
i=1

Qn
i (t) ≤

K∑
i=1

Qn
i (0) +

K∑
i=1

Ani (t) =
K∑
i=1

Qn
i (0) +

K∑
i=1

NA,n
i

(∫ t

0

λni (Qn(s))ds

)
.

Therefore, for suitable H > 0, on recalling (A2) and denoting Zn
i (t) = Qn

i (t)/n,

K∑
i=1

Zn
i (t) ≤

K∑
i=1

Zn
i (0) +

K∑
i=1

sup
y≥n

1

y
NA,n
i (y)

(
1 +

∫ t

0

1

n
λni (nZn(s))ds

)

≤
K∑
i=1

Zn
i (0) +

K∑
i=1

sup
y≥n

1

y
NA,n
i (y)

(
1 +H

∫ t

0

(1 +
K∑
i=1

Zn
i (s)) ds

)
.

By Gronwall’s inequality (cf. p.498 in Ethier and Kurtz [6]),

K∑
i=1

Zn
i (t) ≤

( K∑
i=1

Zn
i (0) +

K∑
i=1

sup
y≥n

1

y
NA,n
i (y)(1 +Ht)

)
exp
(
H

K∑
i=1

sup
y≥n

1

y
NA,n
i (y)t

)
.

By (A5), NA,n
i (y)/y → 1 in probability as y → ∞ and n → ∞ and

∑K
i=1 Z

n
i (0) → 0 in

probability as n→∞ . Therefore,

lim
r→∞

lim sup
n→∞

P(sup
s≤t

K∑
i=1

Zn
i (s) > r) = 0 . (3.11)

It follows by (A2) that

lim
r→∞

lim sup
n→∞

P(

∫ t

0

( 1

n
λni (Qn

i (s)) +
1

n
µni (Qn

i (s))
)
ds > r) = 0 (3.12)
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and that, for δ > 0, ε > 0, T > 0,

lim
δ→0

lim sup
n→∞

P
(

sup
t∈[0,T ]

∫ t+δ

t

( 1

n
λni (Qn

i (s)) +
1

n
µni (Qn

i (s))
)
ds > ε

)
= 0 . (3.13)

We have that, for γ > 0, δ > 0, ε > 0, T > 0, and r > 0,

P( sup
s,t∈[0,T ]:
|s−t|≤δ

| 1√
n
MA,n

i (t)− 1√
n
MA,n

i (s)| > γ) ≤ P
(∫ T

0

1

n
λni (Qn

i (s)) ds > r
)

+ P
(

sup
t∈[0,T ]

∫ t+δ

t

1

n
λni (Qn

i (s)) ds > ε
)

+ P( sup
s,t∈[0,r]:
|s−t|≤ε

|NA,n

i (t)−NA,n

i (s)| > γ) .

By (A5), (3.12), and (3.13),

lim
δ→0

lim sup
n→∞

P( sup
s,t∈[0,T ]:
|s−t|≤δ

| 1√
n
MA,n

i (t)− 1√
n
MA,n

i (s)| > γ) = 0 .

Hence, the sequences of processes (MA,n
i (t)/

√
n, t ≥ 0) are C-tight. A similar argument

shows that the sequences of processes (MD,n
i (t)/

√
n, t ≥ 0) and (MΦ,n

i (t)/
√
n, t ≥ 0) are

C-tight, so the sequence of processes (Mn(t)/
√
n, t ≥ 0) is C-tight.

Next, we identify the limit points of M
n

= (Mn(t)/
√
n, t ≥ 0).

Lemma 3.2. The sequence of processes M
n

converges in distribution, as n→∞, to M .

Proof. From Lemma 3.1, Mn(t)/n → 0 in probability uniformly over bounded intervals.
By (A2) and (3.8), for some H ′, for all n and x, |an(nx)| ≤ H ′n(1 + |x|) . By (3.11), the
sequence of processes (

∫ t
0
(1/n)an(Qn(s))ds, t ≥ 0) is C-tight. By the fact thatMn(t)/n→ 0

in probability uniformly on bounded intervals, Prohorov’s theorem, and the continuity of the
Skorohod map, the sequence of processes (Qn(t)/n, t ≥ 0) is C-tight and every its limit in
distribution (q(t), t ≥ 0) satisfies the equation

q(t) = Γ

(∫ ·
0

(λ(q(s))−Rµ(q(s)))ds

)
(t) .

Since by (A3), λ(x) − Rµ(x) = 0, we must have that q(t) = 0, which implies that the
sequence Qn

i (t)/n tends to zero as n → ∞ in probability uniformly on bounded intervals.
By condition (A3) and (3.8),

∫ t
0
(1/n)an(Qn(s))ds → 0 in probability. Since by (3.9) Y n is

expressed as a continuous function of (Qn(0) +
∫ t

0
an(Qn(s))ds+Mn(t), t ≥ 0), we have that

Y n(t)/n→ 0 in probability uniformly over bounded intervals, so by (3.7), for i ∈ IK,

11



1

n

∫ t

0

µni (Qn(s))1{Qn
i (s)=0}ds→ 0 in probability as n→∞. (3.14)

We also have by (A3) that

1

n

∫ t

0

λni (Qn(s)) ds→ λi(0)t in probability as n→∞ (3.15a)

and

1

n

∫ t

0

µni (Qn(s)) ds→ µi(0)t in probability as n→∞ . (3.15b)

Since by (A5), ND,n
i (nt)/n → t in probability as n → ∞, by (2.2d), (A4), (3.14), and

(3.15b),
Dn
i (t)

n
→ µi(0)t in probability as n→∞. (3.16)

The convergences in (A5), (3.15a), (3.15b), and (3.16) imply if one recalls the definitions in
(3.6b), (3.6c), and (3.6d) that the (MA,n/

√
n,MB,n/

√
n,MD,n/

√
n) converge in distribution

to (MA,MB,MD) , where MA
i (t) = WA

i (λi(0)t), MB
i (t) =

∑K
j=1 W

Φ
ji (µj(0)t), MD

i (t) =∑K
j=1(δij − pji)W

D
j (µj(0)t), so, by (3.6a) and (2.4), the M

n
converge in distribution to

M .

Proof of Theorem 2.4. We note that by (3.10),

Xn(t) = Γ

(
Xn(0) +

∫ ·
0

1√
n
an(
√
nXn(s))ds+M

n
(·)
)

(t), for t ≥ 0. (3.17)

By the Lipschitz continuity of the Skorohod map, (3.8), and (A2), for T > 0 and suitable
H > 0,

sup
t∈[0,T ]

|Xn(t)| ≤ |Xn(0)|+ L

∫ t

0

1√
n
|an(
√
nXn(s))|ds+

1√
n

sup
t∈[0,T ]

|Mn(t)|

≤ |Xn(0)|+ LH

∫ t

0

(1 + |Xn(s)|) ds+
1√
n

sup
t∈[0,T ]

|Mn(t)| .

Gronwall’s inequality, the convergence of the Xn(0), and Lemma 3.2 yield

lim
r→∞

lim sup
n→∞

P( sup
t∈[0,T ]

|Xn(t)| > r) = 0 ,

so, by (3.8) and (A4), the sequence of processes (
∫ t

0
an(
√
nXn(s))/

√
n ds , t ≥ 0) is C-tight.

12



By (3.17), the convergence of the Xn(0), Lemma 3.2, (A4), Prohorov’s theorem, and the
continuity of the Skorohod map, the sequence of processes (Xn(t), t ≥ 0) is C-tight and
every limit point (X̃(t), t ≥ 0) for convergence in distribution satisfies the equation

X̃(t) = Γ

(
X(0) +

∫ ·
0

a(X̃ (s))ds+M (·)
)

(t), for t ≥ 0.

The uniqueness of a solution to the Skorohod problem implies that X̃(t) = X(t) .

4 Generalised Jackson networks with state-dependent

rates

In this section, we consider an application to generalised Jackson networks in conventional
scaling. Suppose as given mutually independent sequences of i.i.d. nonnegative random
variables {uij(n), i ≥ 1}, {vik(n), i ≥ 1} for j ∈ J ⊆ IK and k ∈ IK. For the nth network,
the random variable uij(n) represents the ith exogenous interarrival time at station j, while
vik(n) is the ith service time at station k. The quantities pij represent the probabilities of
a customer leaving station i being routed directly to station j, which are held constant.
The routing decisions, interarrival and service times, and the initial queue length vector are
mutually independent.

We define

µnk = (E[v1
k(n)])−1 > 0, snk = Var(v1

k(n)) ≥ 0, k ∈ IK, and

λnj = (E[u1
j(n)])−1 > 0, anj = Var(u1

j(n)) ≥ 0, j ∈ J ,

with all of these terms assumed finite and the set J nonempty. It is convenient to let λnj = 1
and anj = 0 for j 6∈ J .

Let N̂ Â,n
j (t) = max{i′ :

∑i′

i=1 u
i
j(n) ≤ t} for j ∈ J and N̂ D̂,n

k (t) = max{i′ :
∑i′

i=1 v
i
k(n) ≤

t} for k ∈ IK . We may interpret the process (N̂ Â,n
j (t), t ≥ 0) as a nominal arrival process

and the random variables vik(n) as the amounts of work needed to serve the customers.

Suppose that arrivals are speeded up (or delayed) by a function λ̂ni (x), where i ∈ J , and the
service is performed at rate µ̂nk(x), where k ∈ IK, when the queue length vector is x. As in

Section 3, we let N̂ Â,n
i (t) = btc and λ̂ni (x) = 0 for i 6∈ J . In analogy with (2.2a)-(2.2d) the

queue lengths at the stations at time t, which we denote by Q̂n
i (t), are assumed to satisfy

13



the equations

Q̂n
i (t) =Q̂n

i (0) + Âni (t) + B̂n
i (t)− D̂n

i (t),

Âni (t) =N̂ Â,n
i

(∫ t

0

λ̂ni (Q̂n(s))ds

)
,

B̂n
i (t) =

K∑
j=1

Φ̂n
ji

(
D̂n
j (t)

)
,

D̂n
i (t) =N̂ D̂,n

i

(∫ t

0

µ̂ni (Q̂n(s))1{Q̂n
i (s)>0}ds

)
,

where

Φ̂n
ji(m) =

m∑
l=1

χnji(l),

with {(χnji(l), i = 1, 2, . . . , K), l = 1, 2, . . .} being indicator random variables which are
mutually independent for different j and l and are such that P(χnji(l) = 1) = pji .

If we introduce the random variables Qn
i (t) = Q̂n

i (nt), Ani (t) = Âni (nt), Bn
i (t) = B̂n

i (nt),

Dn
i (t) = D̂n

i (nt), NA,n
i (t) = N̂ Â,n

i (t/λni ), ND,n
i (t) = N̂ D̂,n

i (t/µni ), and Φn
ji(m) = Φ̂n

ji(m),

and functions λni (x) = nλni λ̂
n
i (x) and µni (x) = nµni µ̂

n
i (x), then we can see that they satisfy

equations (2.2a)–(2.2d). Condition (A0) holds as NA,n
i (t)/t → 1 and ND,n

i (t)/t → 1 a.s. as
t→∞ .

If we also assume that Q̂n(0)/
√
n⇒ X0, that, for k ∈ IK and j ∈ J ,

µnk → µk, snk → sk,

λnj → λj, anj → aj,

as n→∞ , and that

max
k∈IK

sup
n≥1

E(v1
k(n))2+ε + max

j∈J
sup
n≥1

E(u1
j(n))2+ε <∞ for some ε > 0,

then condition (A5) holds with WA
j =

√
ajλjB

A
j for j ∈ J , WA

j (t) = 0 for j /∈ J , and
WD
k =

√
skµkB

D
k for k ∈ IK , where BA

j and BD
k are independent standard Brownian motions,

with Φi being a K-dimensional Brownian motion with covariance matrix EΦik(t)Φij(t) =
(pijδjk − pijpik)t, and with processes BA

j , BD
k , and Φi being mutually independent.

Let us assume that the following versions of conditions (A2)–(A4) hold:

(̂A2) For each i ∈ IK,

sup
n∈IN

sup
x∈S

(
λ̂ni (nx)

1 + |x|
+
µ̂ni (nx)

1 + |x|

)
<∞,
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(̂A3) There exist continuous functions λ̂i(x) and µ̂i(x) such that

λ̂ni (nx)→ λ̂i(x), µ̂ni (nx)→ µ̂i(x)

uniformly on compact subsets of S, as n→∞. Furthermore, for x ∈ S,

λ(x)−Rµ(x) = 0,

where λi(x) = λiλ̂i(x) and µi(x) = µiµ̂i(x) ,

(̂A4) There exists a Lipschitz-continuous function â(x) such that
√
n(λ

n
(
√
nx)−Rµn(

√
nx))→ â(x)

as n → ∞ uniformly on compact subsets of S, where λ
n

i (x) = λni λ̂
n
i (x) and µni (x) =

µni µ̂
n
i (x) .

Then the process M in (2.3) and (2.4) is a K-dimensional Brownian motion with covari-
ance matrix A which has entries

Aii = λ̂i(0)λ3
i ai + µ̂i(0)µ3

i si(1− 2pii) +
K∑
j=1

µ̂j(0)µjpji(1− pji + pjiµ
2
jsj) for i ∈ IK,

and

Aij = −

[
µ̂i(0)µ3

i sipij + µ̂j(0)µ3
jsjpji +

K∑
k=1

µ̂k(0)µkpkipkj(1− µ2
ksk)

]
for 1 ≤ i < j ≤ K.

An application of Theorem 2.4 yields the following result.

Corollary 4.1. If, in addition to the assumed hypotheses, condition (A1) holds, then the
processes (Q̂n(nt)/

√
n, t ≥ 0) converge in distribution to the process (X(t), t ≥ 0) with

X(t) = Γ
(
X0 +

∫ ·
0

â(X (s))ds+A1/2B(·)
)
(t),

where B(·) is a K-dimensional standard Brownian motion.

Remark 4.2. The conditions on the asymptotics of the arrival and service rates essen-
tially boil down to the assumptions that the following expansions hold: λ

n
(x) = λ1(x/n) +

λ2(x/
√
n)/
√
n and µn(x) = µ1(x/n) +µ2(x/

√
n)/
√
n with suitable functions λ1, λ2, µ1, and

µ2.

Remark 4.3. If, in addition, the assumption of unit rates is made, that is λ̂nj (x) = 1 for
j ∈ J and µ̂nk(x) = 1 for k ∈ IK, then the limit process is a K-dimensional reflected
Brownian motion on the positive orthant with infinitesimal drift â(0) and covariance matrix
A, and the reflection matrix R = I − P T , as in Theorem 1 of Reiman [18].

Remark 4.4. In order to extend applicability, one may consider independent sequences of
weakly dependent random variables {uij(n), i ≥ 1}, {vik(n), i ≥ 1} for j ∈ J ⊆ IK and
k ∈ IK. Under suitable moment and mixing conditions which imply the invariance principle,
cf., e.g., Herrndorf [8], Peligrad [16], Jacod and Shiryaev [9], Corollary 4.1 continues to
hold.
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Appendix

Proof of Lemma 2.1. The proof is an adaptation of the one in Puhalskii and Simon [17,
Lemma 2.1] and employs the approach of Ethier and Kurtz [6, Theorem 4.1, p.327]. Let

θn(x) = 1 +
K∑
i=1

(µni (x) + λni (x)) ,

µ̂ni (x) =
µni (x)

θn(x)
,

λ̂ni (x) =
λni (x)

θn(x)
,

and

τn(t) = inf{s :

∫ s

0

θn(Qn(u)) du > t} .

We note that τn(t) is finite-valued, differentiable, dτn(t)/dt = 1/θn(Qn(τn(t)) and τn(t)→
∞ as t→∞ . One can see that if the process Qn satisfies a.s. the equations

Qn
i (t) = Qn

i (0) +NA,n
i

(∫ t

0

λni (Qn(s))ds
)

+
K∑
j=1

Φn
ji

(
ND,n
j

(∫ t

0

µnj (Qn(s))1{Qn
j (s)>0}ds

))
−ND,n

i

(∫ t

0

µni (Qn(s))1{Qn
i (s)>0}ds

)
, t ≥ 0, (A1)

then the process Q̂n = (Q̂n(t) , t ≥ 0) defined by Q̂n(t) = Qn(τn(t)) satisfies a.s. the
equations

Q̂n
i (t) = Q̂n

i (0) +NA,n
i

(∫ t

0

λ̂ni (Q̂n(s))ds
)

+
K∑
j=1

Φn
ji

(
ND,n
j

(∫ t

0

µ̂nj (Q̂n(s))1{Q̂n
j (s)>0}ds

))
−ND,n

i

(∫ t

0

µ̂ni (Q̂n(s))1{Q̂n
i (s)>0}ds

)
, t ≥ 0. (A2)

On the other hand, suppose a ZK+ -valued process Q̂n satisfies a.s. (A2) and let

τ̂n(t) = inf{s :

∫ s

0

1

θn(Q̂n(u))
du > t} .
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We show that τ̂n(t) is well defined for all t a.s. Since by hypotheses, for a suitable constant
Ln, θn(x) ≤ Ln(1 + x), we have that∫ s

0

1

θn(Q̂n(u))
du ≥ 1

Ln

∫ s

0

1

1 +
∑K

i=1 Q̂
n
i (u)

du ≥ 1

Ln

∫ s

0

1

1 +
∑K

i=1 Q̂
n
i (0) +

∑K
i=1N

A,n
i (u)

du,

(A3)
where the latter inequality uses the fact that by (A2)

K∑
i=1

Q̂n
i (t) ≤

K∑
i=1

Q̂n
i (0) +

K∑
i=1

NA,n
i

(∫ s

0

λ̂ni (Q̂n
i (u)) du

)
and that λ̂ni (x) ≤ 1 . Since lim supt→∞N

A,n
i (t)/t < ∞ a.s., the rightmost integral in (A3)

tends to infinity as t → ∞ a.s., so does the leftmost integral, which proves the claim. In
addition, τ̂n(t) is differentiable, dτ̂n(t)/dt = θn(Q̂n(τ̂n(t)) and τ̂n(t)→∞ as t→∞ a.s. It
follows that Qn(t) = Q̂n(τ̂n(t)) satisfies (A1) a.s.

Thus, existence and uniqueness for (A1) holds if and only if existence and uniqueness
holds for (A2). The existence and uniqueness for (A2) follows by recursion on the jump
times of Q̂n. In some more detail, we define the processes Q̂n,` = (Q̂n,`(t), t ≥ 0) with
Q̂n,`(t) = (Q̂n,`

i (t), i = 1, 2, . . . , K) by Q̂n,0
i (t) = Q̂n

i (0) and, for ` = 1, 2, . . ., by

Q̂n,`
i (t) = Q̂n

i (0) +NA,n
i

(∫ t

0

λ̂ni (Q̂n,`−1(s))ds
)

+
K∑
j=1

Φn
ji

(
ND,n
j

(∫ t

0

µ̂nj (Q̂n,`−1(s))1{Q̂n,`−1
j (s)>0}ds

))
−ND,n

i

(∫ t

0

µ̂ni (Q̂n,`−1(s))1{Q̂n,`−1
i (s)>0}ds

)
.

Let τn,` represent the time epoch of the `th jump of Q̂n,` with τn,0 = 0 . One can see that
Q̂n,1(t) = Q̂n,0(0) if t < τn,1 . It follows that (Q̂n,1(t), t ≥ 0) and (Q̂n,2(t), t ≥ 0) experience
the first jump at the same time epoch and the jump size is the same for both processes, so
τn,1 < τn,2 and Q̂n,1(t ∧ τn,1) = Q̂n,2(t) for t < τn,2 . We define Q̂n(t) = Q̂n(0) for t < τn,1

and Q̂n(t) = Q̂n,1(t) for τn,1 ≤ t < τn,2 . Similarly, for an arbitrary ` ∈ IN , we obtain
that τn,` < τn,`+1 and Q̂n,`(t ∧ τn,`) = Q̂n,`+1(t) for t < τn,`+1 . We let Q̂n(t) = Q̂n,`(t)
for τn,` ≤ t < τn,`+1 . The process Q̂n is defined consistently for t ∈ ∪∞`=1[τn,`−1, τn,`) . If
τn,`+1 =∞ for some `, then we let Q̂n(t) = Q̂n,`(t) for all t ≥ τn,` .

Suppose that τn,` < ∞ for all ` . Then Q̂n(t) has been defined for all t < τn,∞ =
lim`→∞ τ

n,` and satisfies (A2) for these values of t . We now show that τn,∞ = ∞ . The set
of the time epochs of the jumps of Q̂n is a subset of the set of the time epochs of the jumps
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of the process Q̃n = (Q̃n(t), t ≥ 0), where

Q̃n(t) =
K∑
i=1

(
NA,n
i

(∫ t

0

λ̂ni (Q̂n,`−1(s))ds
)

+
K∑
j=1

Φn
ji

(
ND,n
j

(∫ t

0

µ̂nj (Q̂n,`−1(s))1{Q̂n,`−1
j (s)>0}ds

))
+ND,n

i

(∫ t

0

µ̂ni (Q̂n,`−1(s))1{Q̂n,`−1
i (s)>0}ds

))
.

Since the process Q̂n has infinitely many jumps, so does the process Q̃n . Since λ̂ni (x) ≤ 1,
µni (x) ≤ 1 and Φn

ji(m1)− Φn
ji(m2) ≤ m1 −m2 for m1 ≥ m2, the lengths of time between the

jumps of Q̃n are not less than the lengths of time between the corresponding jumps of the pro-
cess

(∑K
i=1N

A,n
i (t) +

∑K
i=1N

D,n
i (t), t ≥ 0

)
. The process

(∑K
i=1 N

A,n
i (t) +

∑K
i=1N

D,n
i (t), t ≥

0
)

having infinitely many jumps, the time epochs of the jumps of
(∑K

i=1N
A,n
i (t)+

∑K
i=1N

D,n
i (t),

t ≥ 0
)

tend to infinity as the jump numbers tend to infinity. Thus, τn,∞ =∞ a.s.

The provided construction shows that Qn is a suitably measurable function of NA,n,
ND,n, and Φn, so it is a strong solution. We have proved the existence of a strong solution
to (A2) . A similar argument establishes uniqueness.
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